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Better Tools—
Less Dukkha
By Dave Snell

Many of us from the Western world are not familiar with 
the word “dukkha.” Like many words of foreign ori-
gin, it does not have a one- word English translation. 

According to Wikipedia, it is the first of the Four Noble Truths 
of Buddhism. It is also found in scriptures of Hinduism, and it 
refers to “the fundamental unsatisfactoriness and painfulness of 
mundane life.”1

What does this have to do with predictive analytics and futur-
ism, and the associated techniques we embrace in this section? 
Perhaps this new era of artificial intelligence (AI) and machine 
learning will help liberate many of us from the dukkha of our 
current routines. Many of us spend boring hours commuting 
to and from work—sometimes in a paradoxical situation where 
as drivers we must patiently wait in long lines of traffic, yet we 
must be constantly vigilant to avoid accidents—often induced 
by the boredom of the waits. Autonomous cars may not only 
increase our safety, but also permit us to luxuriate in creative 
thought, having delegated the tedium of traffic mindfulness to 
our vehicles. We spend far too much time at work (and at home) 
on repetitive tasks that become mind- numbing rather than 
mind- expanding.

Some might argue that autonomous AI should never be trusted 
for life- critical decisions. I, for one, am ready and willing to del-
egate many of the processes and decisions of the day to AI, just 
as I delegate the life- critical tasks of breathing and digestion to 
my autonomous nervous system. In fact, I cannot imagine how 
tedious and stressful it would be to have to remember to breathe 

in and breathe out thousands of times per day; or to consciously 
have to tell my heart when to contract the left ventricle and send 
essential oxygenated blood to each of my cells.

Throughout human history, we have developed tools to do the 
“heavy lifting” for us: from shovels through backhoes. On the 
data assimilation, number- crunching and presentation side, we 
also are improving our tools, and this issue has several articles 
about new tools and techniques that can help you reduce your 
dukkha:

• Starting with Anders Larson in his “Chairperson’s Corner,” 
we are reminded of the importance of upgrading your tool 
set. Sure, there are sometimes temptations to treat every 
problem as a nail for your new hammer; but as Anders says, 
“just because everything isn’t a nail, that doesn’t mean there 
aren’t nails out there that you’ve been hitting with a spoon.” 
He talks about tools such as random forests that improved 
his analysis of the impact of multidimensional factors on 
health costs; and he even describes an upgrade to some of his 
Excel workbooks by using a function that computes vector 
products on a conditional basis.

• Next, “Parallel Cloud Computing: Making Massive Actuar-
ial Risk Analysis Possible,” by Joe Long and Dan McCurley, 
walks us through a cloud use case where they were able to 
cut a three- month machine learning exploration project 
down to just under four days using a mixture of open source 
tools and a cloud environment. That freed up a lot of time 
for them to digest the results, and run variations that would 
not have been feasible with a single processor approach to 
the project. Yes, they had to spend some time on the learn-
ing curve for parallelization; but it resulted in much faster 
throughput. Supposedly, Abraham Lincoln said, “Give me 
six hours to chop down a tree and I will spend the first four 
sharpening the axe.” Lincoln would surely have viewed a 25- 
fold efficiency return as a wise investment.

• Moving on in our description of new tools, Michael Niemerg 
tells us about a novel technique. “The Forgery Game: 
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Generative Adversarial Networks” describes a generative 
adversarial network, or GAN. This is a very recent technique 
in artificial intelligence algorithms—introduced in 2014. A 
GAN is an unsupervised machine learning technique and can 
accomplish some interesting, and perhaps disturbing, out-
puts. Basically, models compete with each other and generate 
synthetic data. In one type of application, the result can be 
indistinguishable from a real photographic image (thus, the 
forgery game). This is leading- edge stuff; and as I am writing 
this issue introduction (Chinese New Year— ), I see 
an article about GANs in use to analyze molecular genetic 
mechanisms to create new synthetic drugs.2

• Not every tool has to be new, of course. Some are older ones 
that just have been underutilized. Ben Wolzenski led our 
“Blue Ocean” Delphi study back in 2009; and it predicted 
some nearly heretical ideas back then, such as pet insurance 
and custom- designed coverage developed online. Now, they 
have become important products with rapid growth. In 
“Why Consider a Delphi Study?” Ben describes advantages 
of this largely qualitative rather than quantitative approach 
to forecasting. It can provide value when other methods 
cannot, and can also serve as a second opinion for the other 
methods. He also details how our section has provided lead-
ership in this technique in previous studies, and mentions 
another SOA Delphi study being launched now.

• I wrote the article “Hierarchical Clustering—A Recommen-
dation From a Nonhierarchical Manager,” where I describe a 
bottom- up, or agglomerative, technique that is more visually 
appealing to nonmathematicians than the more common 
k- means approach to clustering. Sometimes we overlook 
the fact that most senior managers are not actuaries or data 
scientists; and a tree- like visual that shows both the natural 
groupings you have discerned and the relative dissimilarity 
among the various groups, for even a multidimensional set 
of groupings, might be easier to understand, and thus more 
likely to be accepted.

• As the amount and types of data continue to increase, the 
complexity of models can be a limiting factor in their utility. 
Jeff Heaton, in his article, “Feature Importance in Super-
vised Training,” addresses the issue of choosing which factors 
are the more important ones. Jeff takes us through model- 
specific feature ranking, model- agnostic feature ranking, and 
multivariate feature ranking. Removing unimportant features 
can increase both the speed and the accuracy of your models. 
This is especially important when you are employing feature 
engineering, which can benefit from feature importance 
evaluation to reduce the number of combinations involved 
in pair- wise multivariate considerations.

• It is nice that we have these new modeling tools available 
to us; but how do we share them with the folks who do not 
have, or even want to have, RStudio or a predictive analytics 
toolbox on their PCs? What if they want to get insights from 
your modeling efforts; but they do not wish to have to write 
R code to do that? In “Shiny: Another Step Forward in Data 
Democratization,” Eileen Burns introduces us to a tool that 
addresses that concern. It’s called Shiny, and the name is apt 
because it allows you to create an attractive and intuitive 
web application where non- programmers can try out your 
model and be creative and productive with it. Shiny can help 
you share your R apps with a larger base. The example she 
describes for us is a project where she put a web front end on 
the new PAF Newsletter Catalogue.

Eileen’s article is also my segue to a new feature you should all be 
enjoying now—the newsletter index of all 195 articles from our 
section newsletters. These go back to September 2009, when the 
old Futurism Section became the Forecasting & Futurism Section 
(later Predictive Analytics and Futurism . . . as a result of a Delphi 
study). We know that most actuaries love Excel, and especially 
like to filter and sort and do lots of other data manipulations with 
it. On the newsletter webpage, you can now download your own 
copy of an Excel workbook with several columns for each article. 
If you want an actuarial perspective on agent- based modeling, 
neuroevolution of augmenting topologies (NEAT), hidden Mar-
kov models, genetic algorithms, or dozens of other topics, you can 
search, sort and filter it as much as you wish. Best of all, when you 
find the article you want to see, you can click on the hyperlink 
and go right to that issue! Thanks to Nick Hanewinckel, the PAF 
Section Council, section specialist Jessica Boyke and staff partner 
Beth Bernardi, we all have a handy new research tool.

Perhaps we can’t completely escape dukkha; but the tools and 
techniques described in this issue ought to make it less mundane 
and less painful for you.

Enjoy! ■

Dave Snell, ASA, ACS, ARA, ChFC, CLU, FALU, 
FLMI, MAAA, MCP, teaches AI Machine Learning 
at Maryville University in St. Louis. He can be 
reached at dave@ActuariesAndTechnology.com.

ENDNOTES

1 Quoted from https://en.wikipedia.org/wiki/Dukkha (accessed Feb. 16, 2018).

2 http://www.mauldineconomics.com/tech/tech-digest/right-to-try-our-best-shot-at 
-saving-healthcare
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Chairperson’s Corner
By Anders Larson

I know that some of my fellow council members (and at least 
one former council member) will cringe when they see that I’m 
leading off the Chairperson’s Corner with an anecdote about 

Microsoft Excel. But stick with me here. About five or six years 
ago, I realized that there was a formula that allowed you to do 
a conditional sum- product of two vectors. I was aware of the 
=sumproduct and =sumifs, but until then, I was unaware that the 
=sumproduct could be modified to add conditions. Mind = blown.

So what happened after that? I started noticing instances left and 
right where old workbooks could be improved with this “new” 
formula. A few years before that, I had a similar experience upon 
realizing the superiority of index- match functions to vlookups. 
I started cleaning up existing workbooks, but more importantly, 
I started thinking differently about setting up new workbooks. 
Of course, I didn’t invent the conditional sum- product or the 
index- match. I just finally realized they existed, and all of a sud-
den I became a little bit better at my job.

I believe that actuaries can look at predictive analytics in much 
the same way. There are algorithms and techniques out there 
just waiting to be implemented into your existing work. Now, 
I realize that it’s significantly more difficult to get comfortable 
with a support vector machine than a simple Excel formula, 
but the concept is the same. Once you start to see how a new 
approach can fit into one problem, it becomes that much easier 
to see how it can fit into countless others.

The obvious danger is that it is easy to start seeing everything 
as a nail once you have a cool new hammer to play with. In gen-
eral, if a simpler model is just as effective as a more advanced 
approach, it’s best to stick with the simpler approach. One of the 
key drawbacks I find with many machine learning algorithms is 
a lack of interpretability, particularly for those who don’t work 
with them on a regular basis. In some cases, that’s fine—I don’t 
really care how my Amazon Alexa is able to understand speech, 
but a regulator may not be as willing to accept your estimates if 
they seem like they came from a black box.

But just because everything isn’t a nail, that doesn’t mean there 
aren’t nails out there that you’ve been hitting with a spoon. Sure, 
the spoon will eventually drive the nail in there, but there’s a bet-
ter tool out there. In our July 2017 newsletter,1 I wrote about a 
situation where we used a gradient boosting machine to predict 

primary care office visit utilization for individual patients. In the 
past, we might have attempted to predict primary care office 
visits using an existing risk score algorithm meant to predict 
health care costs. And while the existing risk score algorithm 
may have been useful, it was not really the best tool for this job. 
For instance, the sickest patients in a commercial population 
can have risk scores that are more than 100 times the population 
average, but very few patients will have even 10 times as many 
primary care visits as the population average.

Instead of thinking of each new algorithm as an all- purpose 
hammer, think of them as new tools to be added to your existing 
toolbox. Actuaries already have a wide array of traditional tools 
at their disposal, and those will continue to play an integral role 
in the future of actuarial science. But we can also improve our 
profession by incorporating new approaches into our work.

Here’s another example from my own experience. I recently co- 
authored a paper2 in which we identified the key drivers of gross 
savings for accountable care organizations (ACOs) participating 
in the Medicare Shared Savings Program (MSSP). We had more 
than 180 features about each ACO, many of which were highly 
correlated with each other. A few years ago, I likely would have 
approached this problem by limiting the data to a handful of 
reasonably independent features that I expected would be key 
drivers, and then running a simple linear regression. This would 
have still made for an interesting paper, but it likely would have 
been loaded with caveats that would have softened our conclu-
sions. Instead, we used a random forest to estimate the relative 
importance of all 180+ features in predicting gross savings. This 
method allowed us to evaluate all the features together and let 
the machine identify which were most predictive. There were 
still caveats, of course—there is no silver bullet for a complex 
problem like this—but we felt the more rigorous statistical 
approach added credibility to our findings.

These predictive analytics tools are already out there. They’ve 
already been designed, built and tested for us. As actuaries, we 
just have to pay the small price of learning how to use them (and 
maybe some Amazon Web Services fees), and we can have them 
in our own toolbox. ■

Anders Larson, FSA, MAAA, is an actuary at 
Milliman in Indianapolis. He can be reached at 
anders.larson@milliman.com.

ENDNOTES

1 https://www.soa.org/Library/Newsletters/Predictive-Analytics-and-Futurism/2017 
/june/2017-predictive-analytics-newsletter-issue-15.pdf

2 http://www.milliman.com/insight/2017/What-predictive-analytics-can-tell-us 
-about-key-drivers-of-MSSP-results/
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Parallel Cloud 
Computing: Making 
Massive Actuarial Risk 
Analysis Possible
By Joe Long and Dan McCurley

This article will walk through a cloud use case where we were 
able to cut a three- month machine learning exploration 
project1 down to just under four days using a mixture of 

open source tools and the Microsoft Azure cloud. This translates 
to an approximate 25- fold reduction in serial compute time for 
such a task. We will give a short introduction to the cloud while 
sharing our experience of managing the pool of data- crunching 
machines that ran our analysis. In closing, we will discuss lessons 
learned and ways to improve the plan of attack, as well as touch 
on the importance of state management to aid in efficiency and 
the reproducibility of results when using the cloud.

SETTING THE STAGE FOR THE CLOUD
Machine learning is spreading quickly across many industries 
and is showing promising results for making better predictions 
and automating manual tasks. However, with increases in data 
size and the greater power of more complex algorithms, the 
computing resources it takes to crunch the numbers increase as 
well. Nowadays, it may take days or months to conduct an anal-
ysis on a single machine. There is a solution, though: Thanks 
to advances in cloud computing, the phrase “the sky’s the limit” 
has a whole new meaning as we now have the ability to speed up 
time if the reward outweighs the cost of doing so.

In order to utilize the time- saving efficiencies of the cloud, a 
large computational process must be able to be broken down 
into independent tasks that can be run in parallel. Not every 
process fits this mold. Some processes rely on a series of sequen-
tial calculations, where each calculation is dependent on the 
ones that precede it. An example of such a process would be 
calculating a single sequence of time- dependent events, which 
would not be a good use case for the parallel compute capabili-
ties of the cloud.

Machine learning, however, is full of many processes that can 
be broken down into independent tasks calculated in parallel, 

which can then be merged together after all independent cal-
culations have been completed. A good example of this would 
be an ensemble method such as the random forest algorithm, 
which is used to develop a predictive model comprised of 
hundreds to thousands of independent decision trees that are 
averaged together to produce a single prediction. Another 
easily parallelizable example is the Monte Carlo simulation. 
These algorithms are prime candidates for the massive parallel 
computing abilities of the cloud. Almost all supervised learn-
ing algorithms use some kind of resampling technique (e.g., 
bootstrapping, cross- validation) to optimize the bias- variance 
trade- off for generalization. Most resampling techniques are 
embarrassingly parallel and can benefit greatly from cloud 
computing.

In our case, we used the cloud to help with a large machine 
learning exploration project, which was comprised of many cal-
culations done in open source R. Our initial exploration started 
with a single heavy- duty, bare- metal machine that could handle 
traditional memory and compute intensive tasks. We quickly 
discovered that in order to run the full exploration analysis we 
mapped out, we would miss our deadline. Our initial estimate 
was that the full analysis—when run sequentially on our in- 
house machine—was expected to take 90 days of continuous 
computer run time. However, with some manual effort to break 
the analysis into semi- equal chunks, we estimated we could run 
it in Microsoft’s Azure cloud and complete all of our calculations 
in less than a week. This approximately 25- fold reduction in 
serial compute time to run our analysis gave us more time to 
digest the results, giving us the ability to run further variants of 
our initial exploration plan. More variants can equal better value 
to the client.

THE MAGIC BEHIND THE CLOUD
“There is no cloud—it’s just someone else’s computer” is a 
common meme used to explain cloud services. While this phrase 
helps one understand the basic idea of the cloud, it does not 
fully recognize the great capabilities and flexibilities of the 
modern cloud infrastructure. The concept of the cloud dates 
back to the 1960s and is commonly attributed to J.C.R. Lick-
lider and John McCarthy.2 Joseph Licklider is credited for his 
core concept of a Galactic Network or “Network of Networks” 
and John McCarthy for theorizing utility computing. These 
ideas reached commercial viability in 2002 when Amazon Web 
Services (AWS) started providing web- based, pay- as- you- go 
services to companies to store data and run applications. Cur-
rent major competitors to AWS include Microsoft Azure and 
Google Cloud.

All of these providers offer similar ways to access their resources. 
It is helpful to think of these resources in three main categories:
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1. Infrastructure as a service (IaaS) creates a virtual data center 
in the cloud similar to what your company would have in 
an information technology (IT) climate- controlled room. It’s 
easy to adopt but expensive to run.

2. The second way to access cloud resources is through platform 
as a service (PaaS). In this method, the cloud provider takes 
care of storage and computation and provides a platform 
to do a focused type of work. If you want a database that 
is always available, but don’t want to deal with any mainte-
nance or tuning, this is an excellent solution.

3. Thirdly, software as a service (SaaS) allows a company to build 
a custom solution that can only exist in a cloud environment. 
Salesforce, Office 365 and G Suite are examples of SaaS.

Viewed in this context, our computing project was an example 
of an IaaS. But by the end of our exploration we had migrated 
much closer to a PaaS solution. The actual difference can get 
quite fuzzy.

THE LEARNING CURVE
Once we realized on- premise calculations would take too long, we 
turned to the task of determining how many (and what capacity) 
computers would be needed for a cloud solution. After a period 
of research on best approaches for parallelizing our process in the 
cloud, we estimated that 63 virtual machines (VMs) should be 
able to handle the work in a reasonable time frame. Each machine 
had eight cores and 56 gigabytes of RAM, giving us a total of over 
500 cores and 3,500 gigabytes of RAM at our disposal. For this 
project, we chose to provision the machines with Windows as the 
operating system due to familiarity, but we note this costs about 
50 percent more in license fees than an equivalent Linux VM. We 
wrote PowerShell scripts to automate cloning and administration 
of the machines. Later in this article we will describe a new tool 
that makes things much easier (and transitions this solution from 
pure IaaS to something closer to PaaS). At the time of our proj-
ect, this setup had a sticker price of less than $2 per hour to run 
each virtual machine of this size in Azure.

Our first step was creating the initial VM and then installing R 
and all the R packages we would need to run our analysis. Once 
we had our initial VM configured, we created 62 clones of it 
using the Invoke- Parallel PowerShell script Warren Frame dis-
cussed in his “Invoke PowerShell on Azure VMs” article,3 which 
had some other helpful pointers we used along the way.

Now we had 63 VMs available to process data but hit a roadblock. 
How do we launch our R scripts on the VMs in a coordinated 
way? For this, we ended up using another script by Warren 
(Invoke- AzureRmVmScript) to invoke commands remotely on 
the VMs. We wrapped these commands in the Invoke- Parallel 

script to kick off the R scripts simultaneously across the VMs. 
An additional script served the purpose of deallocating VMs 
after the R scripts finished running to measure progress and 
limit costs. Allocated VMs charge per minute and deallocated 
VMs carry no compute charges.

Once all the VMs completed their tasks we collected our data 
and analyzed our results. In the end we ran a total of 90 days’ 
worth of parallel compute time across the VMs, with the longest 
VM running for a total of three-and-a-half days at a total cost 
of around $3,000. The equivalent cost of buying and setting 
up similar machines would have required weeks of setup and 
tens of thousands of dollars of hardware purchase for the same 
result. Of course, the cloud approach also required a fair amount 
of time spent crafting and debugging the PowerShell scripts, 
which adds significant soft costs in addition to the hard costs. 
Additionally, when using an IaaS solution over time there would 
also be the ongoing costs associated with keeping the VM image 
up- to- date with the latest security updates.

THINGS KEEP ON EVOLVING
After completing our first large run in the cloud, we found that 
Microsoft was working on an R package simultaneously that 
automated many of the tasks we had done in PowerShell. This 
R package is called doAzureParallel, leveraging an Azure service 
called Batch. The package allows a user to create a pool of VMs 
in the Azure Batch service with a few lines of R code and then 
register it as the parallel back end for the R foreach package. If 
you are already familiar with the R foreach package then mak-
ing the transition to using doAzureParallel is done simply by 
running some code that creates the pool in Azure Batch. Any 
existing foreach code using the %dopar% function can then be 
used as is.

Azure Batch allows you to easily launch a pool of Linux VMs, 
which as we mentioned earlier is much more cost- effective than 
using a pool of Windows- based VMs. The auto scaling features 
of Azure Batch allow dynamically scaling up or down the num-
ber of VMs in a pool based on the demand of the tasks you are 
running. Another option is to use a mix of dedicated or low- 
priority VMs in a pool. Cloud providers make excess compute 
capacity available at steeply discounted rates with the caveat that 
these machines can be interrupted by those willing to pay at the 
higher rate. If this happens, the current task you are running 
gets canceled and reassigned on another low- priority machine. 
Therefore, it is recommended to only use the low- priority 
machines if you have short- running tasks or your calculation 
can progress despite multiple restart attempts.

One recently added feature of doAzureParallel worth noting 
is its ability to seamlessly run R inside a Docker container on 
the VMs within your pool. This is similar to how we cloned a 
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custom VM image in our initial IaaS approach. It allows use of 
a prespecified environment that keeps R versions and packages 
in sync, which ensures reproducibility of results. The added 
benefit with the doAzureParallel Docker container approach is 
that now you can rely on Azure Batch to create up- to- date VMs 
each time you run an analysis, ensuring that you have the latest 
security updates. By default, doAzureParallel uses the “rocker/
tidyverse:latest” image that is developed and maintained as part 
of the rocker project.4 However, you can also specify a custom 
Docker image, which allows you to lock in a version of R if you 
are concerned about duplicating results long term.

In our case, doAzureParallel has helped us move our initial 
IaaS approach to more of a PaaS approach. Now we can rely 
on doAzureParallel to maintain the administration work of cre-
ating pools of VMs with up- to- date security updates, which are 
running our prespecified environments. Using such solutions 
allows users to focus more on the analysis they are trying to con-
duct rather than spending the time managing the infrastructure 
it runs on.

LESSONS LEARNED AND RECOMMENDATIONS
Taking a look back at our journey in the cloud, we have some 
final recommendations for those looking to get the most out of 
these exciting new tools.

• If you plan on using the cloud for an analysis in R, check 
out the well- documented doAzureParallel package. Even if 
you don’t plan on using R for analysis you might find some 
workflows that help with other languages as well.

• The tools cloud providers have are constantly evolving and 
iterating, and it is essential to be aware of what new tools are 
made available. For example, moving from the highly manual 
cloning of machines to Azure Batch for automated compute 
pool creation was revolutionary and much easier to use.

• We highly recommend the use of Docker containers or some 
other state management when conducting work in R or any 
other language if you need repeatable results over a long 
span of time.

• Finally, we recommend using Linux- based VMs over Win-
dows if your task allows you to, as it can provide a welcome 
cost savings. Also investigate the use of low- priority VMs (or 
spot pricing in the AWS world) if your workflow supports 
short- running tasks.

Table 1 gives an estimate of potential cost reductions we could 
have achieved if we were to rerun our analysis applying these 
recommendations using the doAzureParallel package. For 

comparison, we have also estimated the cost of using AWS as 
the cloud provider. Note that these are estimated costs as of Jan. 
23, 2018; pricing may vary in your region or the contract you 
have in place with Microsoft Azure or AWS.

As you can see, the cloud is more than just someone else’s com-
puter. It’s an ecosystem of resources that can be leveraged to 
explore ideas and complete tasks that were once unfeasible to 
achieve with the local computing resources of the past. ■

Joe Long is an assistant actuary and data 
scientist at Milliman. He can be reached at 
joe.long@milliman.com.

Dan McCurley is the Cloud Solutions Architect at 
Milliman. He can be reached at dan.mccurley@
milliman.com.

ENDNOTES
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for more information about MARA.

2 Mohamed, Arif. A History of Cloud Computing. Computer Weekly.com, March 2009, 
http://www.computerweekly.com/feature/A-history-of-cloud-computing (accessed 
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3 F., Warren. Invoke PowerShell on Azure VMs. Rambling Cookie Monster, http:// 
ramblingcookiemonster.github.io/Invoke-AzureRmVmScript/ (accessed Feb. 1, 2018).

4 Tan, J.S. Scale Up Your Parallel R Workloads with Containers and doAzurePa-
rallel. Revolutions, Nov. 21, 2017, http://blog.revolutionanalytics.com/2017/11 
/doazureparallel-containers.html (accessed Feb. 1, 2018).

Table 1
Potential Cost Reductions

VM Option

Total 
Compute 

Hours

Price Per Hour1 Total Cost

Azure2 AWS3 Azure AWS
Windows OS 2,151 $1.17 $1.05 $2,516.67 $2,258.55

Linux OS 2,151 $0.78 $0.67 $1,677.78 $1,441.17

Linux OS with 
low priority4

2,151 $0.14 $0.07 $301.14 $150.57

1. Estimated prices from Microsoft Azure and AWS online pricing for VM compute charges 
only. Does not Include storage or data transfer prices, which can become meaningful if 
not managed efficiently.

2. Azure A10 VM with eight cores and 56 gigabytes of RAM in the North Central U.S. region.
3. AWS r.3.2xlarge VM with eight cores and 61 gigabytes of RAM in the U.S. East (Ohio) 

region.
4. Assumes tasks were run without the VMs being preempted.
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The Forgery Game: 
Generative Adversarial 
Networks
By Michael Niemerg

Imagine a not- too- distant future. You open your mailbox 
to find a pretty ordinary- seeming catalog. You start to flip 
through it. Inside, you find pictures of beautiful, smiling peo-

ple. You see perfectly manicured lawns and perfect bedrooms. 
The catch: None of this is real. These images weren’t even cre-
ated using computer graphics. All these images were created by 
a model—by a generative adversarial network (GAN).1,2 Don’t 
believe this is possible? There are already images of fake people 
that look eerily realistic3 and ways to manipulate an image to 
turn that smile into a frown.4

What is a generative adversarial network? How does it create 
synthetic images of people and things that are nearly indistin-
guishable from real photos? The first thing we need to do is 
parse the moniker itself. The “generative” part of generative 
adversarial networks refers to what the model is doing: gen-
erating synthetic data. The “adversarial” refers to how it is 
trained—in an adversarial fashion between two competing 
models. The “networks” refer to the model form, which are 
neural networks (while there is no requirement that generative 
adversarial models must be neural networks, this is the primary 
focus of active research in the area).

TRAINING GANS
Let’s dive a little more into how these models are trained. GANs 
are created via two competing networks: a generator that creates 
synthetic data and a discriminator whose job it is to distinguish 
the real data from the synthetic data. This adversarial connec-
tion is the whole key to the process. By putting the models in 
competition, the generator is forced to successively get better 
at creating data that looks real while the discriminator gets 
increasingly more adept at separating real data from synthetic 
data. A common analogy used to describe GANs is to think 
of the generator model as an artwork forger, trying to pass off 
forgeries as the real thing, while the discriminator plays the role 
of the curator trying to identify the real art and reject the forg-
eries. The forger gets continually better at generating the fake 

artwork but the curator also improves at spotting the real art 
apart from the forgeries.

GAN models are neural networks. While the relationship 
between the generator and the discriminator is unique, all the 
typical rules and structure of training neural networks apply to 
both. If the jargon of neural networks is foreign to you, simply 
remember that a neural network is a predictive model. It will 
take in some data, have parameters that will be fit by optimizing 
an objective, and ultimately produce output (the synthetic data 
for the generator, and the probability of data being real or syn-
thetic for the discriminator).

Now let’s get a little more precise on the algorithm for GANs.

GAN ALGORITHM
For each round of training:

• Generate random points from latent space (a good choice 
would be random numbers from a normal distribution) and 
create the synthetic data by feeding the random points into 
the generator.

• Combine this synthetic data with the real data.

• Train the discriminator to distinguish between these real and 
synthetic values.

• Update the generator to fool the discriminator:

 - Freeze the discriminator so that its weights do not change.
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 - Feed the generator random points from latent space 
as input.

 - The generator will convert these random points to syn-
thetic data.

 - The frozen discriminator will then classify this synthetic 
data as “real” or “synthetic.”

 - Update the weights in the generator to alter how it cre-
ates its synthetic data so that it can more easily fool the 
discriminator.

Figure 1 
A Representation of the GAN Model- Building Process

Real Data Discriminator Real or 
Synthetic?

Latent  
Space Generator Synthetic  

Data

The last step above can seem a bit curious so let’s look more 
closely at what is happening. In more precise terms, this step 
in the process is trying to minimize the difference between two 
vectors of numbers (with each entry in the vectors correspond-
ing to an observation). Keeping in mind that the discriminator is 
being fed a series of synthetic observations, the first vector is the 
discriminator’s prediction of whether each of these observations 
is real or synthetic. The second is simply a vector of targets that 
say that each observation is real. Because the generator is trying 
to fool the discriminator, it wants to get them as close as possi-
ble. However, while training with this objective, the generator 
is unable to manipulate the discriminator directly (in fact, being 
frozen, the discriminator doesn’t change at all in this last step) 
but the generator is still able to indirectly alter the first vector 
(the discriminator’s predictions) by altering its own weights so 
that its generated output becomes harder for the discriminator 
to distinguish from the actual data.

Ultimately, the generator is doing a good job when the discrim-
inator can’t tell the difference between synthetic data and real 
data (e.g., the predicted probability of either is 50 percent). The 
coolest part? Throughout this whole training process, the gen-
erator has no access to the real images! It learns to create them 
without ever having direct access to them.

Another way to think about what the model is doing is to think 
about our real sample data as coming from a high- dimensional, 
data- generating distribution. When training a GAN, our train-
ing set is really a sample of data points from this data- generating 
distribution. The GAN model uses this sample data to learn 
about the structure of the entire data- generating distribution so 
that it can learn how to approximate new samples from it.

For an illustrative example, see Figure 2. Our data set to build 
our GAN is a sample of points (black boxes) from the data- 
generating distribution (gray distribution). Our model learns an 
(imperfect) representation of that distribution (white distribu-
tion) from which we can draw samples (white triangles).

Figure 2 
Data- Generating Distribution and GAN Approximation

CHALLENGES WITH TRAINING GANS
Currently, generative adversarial modeling is still an active area 
of research. There are several ways in which GANs can fail or in 
which training them can produce fickle results.

The most common is simply instability in training. For instance, 
training the model with the same parameters might work well 
in one training run only to produce poor results in another run 
without any changes to the model parameters other than differ-
ent random number initializations.

Another problem with GANs is that measuring the quality of 
the synthetic data can be difficult. While both the generator and 
the discriminator have a loss function, these loss functions are 
really only optimizing the competition against its adversary. In 
a regression problem, we know that higher R- squared is better 
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and, in a classification problem, that higher accuracy is better 
(ceteris paribus). If our task is generating realistic synthetic images, 
however, our real objective is independent of the nominal value 
of the loss function but is instead tied to how convincing the 
image is to a human. Because it is hard to come up with a good 
loss function for how different the synthetic picture of a bed-
room is from a real bedroom, it can be hard to tell exactly when 
one GAN model performs better by simply checking metrics. 
We need to actually examine our sample output.

Another difficulty with training GANs is that they have a ten-
dency to collapse into similar output for different input from the 
latent space. Part of the reason for this is that the GAN model 
can only look at each instance in isolation when determining 
whether a data point is real or synthetic. Why is this problem-
atic? Well, imagine, for instance, that you wanted some synthetic 
data representing the rolls of a six- sided die. If I presented you 
with a 0 or a 7 you would easily recognize those data points 
as unrealistic. However, what if I presented you with a 4? That 
seems to be a very plausible die roll. What if I then generated 
for you a never- ending series of 4s as synthetic data? If you are 
constrained to only being able to look at one data point at a time 
to judge whether an instance looks real (i.e., we are memoryless 
like a GAN), you can’t discriminate these obviously synthetic 
data points from real points. This is problematic. We need some 
way of relating observations to each other to tell the difference.

In Figure 3, we can see an example of a degenerative GAN. 
The GAN fails to learn a good representation of the true data- 
generating distribution, instead only learning to reproduce 
frequent values that lie near the mean of the data- generating 
distribution.

Figure 3 
Data- Generating Distribution and GAN Approximation: 
Degenerative Example

Another challenge with GANs is one that faces all predictive 
models: They inherit the biases of the data used to train them. 
Say, for instance, we are training a model to generate images of 
bedrooms. Let’s also suppose only a small percentage of bed-
rooms contain yellow bedsheets and that none of these bedrooms 
make it into our training set for the GAN model. What could 
likely happen is that our model will not learn to associate yellow 
bedsheets with bedrooms and our synthetic images will contain 
no yellow bedsheets even though they exist in the real world. 
Our model can only reconstruct the data- generating distribution 
to the extent that it is faithfully represented in our training data.

PRACTICAL TIPS AND ADVANCED ARCHITECTURES
Multiple techniques exist for aiding the training of GANs. Some 
techniques include: modifications to the loss function used in 
training, incorporating common neural network regulariza-
tion techniques into the training phase, and adding some extra 
challenge to the discriminator by introducing noise to its input. 
Many of these techniques are incorporated into advancements 
to the original GAN algorithm.

A few of the advanced GAN algorithms are particularly notewor-
thy. Deep convolutional GANs (DCGANs)4 improve upon GANs 
by offering refinements to the architecture of the neural networks 
used to train them. Wasserstein GANs5 add several wrinkles to 
GANs, including using a loss function whose numerical value 
corresponds more closely with the true quality of the synthetic 
data. Furthermore, the idea of mini- batch discrimination6 was 
created to counter the tendency of models to collapse to a narrow 
output range by adding distance information about other exam-
ples from within each training mini- batch to the discriminator.

Generally, research on GANs is proceeding at a rapid clip. In all 
likelihood, significant improvements have been made to GANs 
between when I wrote this article and the time it went to print.

DOES IT MATTER TO ACTUARIES?
Much of the work with GANs to date has been on synthetic 
image and audio generation but that is quickly changing. Will 
GANs ever make their way to the insurance or health care sec-
tors? The future is still to be seen, but the potential is there as 
the quality of the algorithms mature and the use cases become 
more apparent.

One possible use for GANs could be to generate data syntheti-
cally to feed into other predictive models when training data is 
scarce. Various types of data set augmentation are already com-
mon practice when creating neural networks for image analysis. 
GANs could simply become another extension of this practice.

Another more creative use for GANs could be in the realm of 
data- sharing. Imagine being able to share the data needed to 
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build predictive models without sharing the data itself. Instead of 
training the predictive model with real data, one party could train 
a GAN on its data to “encrypt” it. The other party could then 
generate synthetic data from the GAN and use that synthetic 
data to actually train the ultimate predictive model. The only 
thing that needs to be shared is the neural network itself. In this 
way, data insight could be shared without actually sharing data.

These use cases are speculative at the moment but not unrealis-
tic. It’s still too early to tell whether GANs rise to prominence 
as another commonplace method in the modeler’s toolbox or 
whether they remain a curiosity. ■

Michael Niemerg, FSA, MAAA, is an actuary 
at Milliman in Chicago. He can be reached at 
michael.niemerg@milliman.com.
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Why Consider a 
Delphi Study?
By Ben Wolzenski

In the December 2017 Predictive Analytics and Futurism News-
letter, author and recent Predictive Analytics and Futurism 
(PAF) Section Council member Bryon Robidoux wrote about 

the TED talk, “The Human Insights Missing from Big Data,” 
by Tricia Wang. I highly recommend that article, which also 
contains a link to access the TED talk. It provides a perfect pref-
ace to this article about an old futurism tool in the new world 
of predictive analytics: the Delphi study. Both articles support 
the idea of supplementing the results of a model with data from 
alternative sources to help validate the model. A more scientific 
way than relying on yourself or a co- worker for insight is to use 
a Delphi study.

Like predictive analytics, the Delphi method is used for fore-
casting. But there they diverge; instead of tools and data, the 
Delphi employs a panel of experts (“panelists”) to address 
specific questions or issues. But unlike a roundtable discussion 
or a mere survey, the Delphi technique gathers responses from 
panelists anonymously, and sends all those separate responses 
(again, anonymously) to each panelist. The panelists are asked 
to reconsider and possibly refine their responses based on 
the information gleaned from the responses of all the others. 
These “rounds” of questions and answers are repeated until the 
respondents stop making material changes to their answers. The 
result may be a consensus, or convergence around two or more 
points of view.

The Delphi method is most useful when other forecasting techniques, 
especially those that use past data to estimate future outcomes, appear 
to have limited value. Or when the forecaster simply feels the 
need for a second opinion, derived by other means. The Del-
phi method has been around since the 1950s, but was almost 
unused by the actuarial profession until 2005, when the Society 
of Actuaries (SOA) published “A Study of the Use of the Del-
phi Method, A Futures Research Technique For Forecasting 
Selected U.S. Economic Variables and Determining Rationales 
for Judgments.” That landmark study was as much (or more) 
about how to perform a Delphi study as it was about predict-
ing economic variables in 2024 (and the rationales for those 
predictions).

Then, in 2009, the SOA published “Blue Ocean Strategies in 
Technology for Business Acquisition by the Life Insurance 
Industry.” In three rounds of narrative questions and panelists’ 
responses, a series of strategies were identified and refined. Here 
are two examples:

• Strategy #5: Your Way Insurance Company—“Prospects 
custom- design coverage online”

• Strategy #8: Holistic Insurance Company—“Risk ‘agents’ 
help mitigate all risks”

The next major Delphi study by the SOA was spearheaded by 
the Long Term Care Think Tank and published in 2014: “Land 
This Plane,” with the goal of arriving at a consensus on solutions 
to the nation’s long- term care financing challenges. There were 
widely different views about the roles of government and the 
insurance industry among the long- term care experts recruited 
to be panelists. Despite these differences, the final report iden-
tified a series of principles upon which there was general (albeit 
not unanimous) agreement.

And even as this article was written, the SOA has launched a sec-
ond Delphi study regarding economic variables, with a focus on 
methods and assumptions for financial projection models. With 
an ever- greater world of data at our disposal, the comprehensive 
training of actuaries gives us an advantage in applying human 
insight—and the Delphi method can provide a means to derive 
value from that insight.

Ben Wolzenski, FSA, MAAA, is managing member 
at Actuarial Innovations, LLC in St. Louis. He can 
be reached at bwolzenski@gmail.com. 
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Hierarchical Clustering: 
A Recommendation 
From a Nonhierarchical 
Manager
By Dave Snell

Most of the people who know me well are aware that I’m 
not a big fan of hierarchical management. Back when I 
was VP over a fairly large area I used to value highly the 

direct reports who felt comfortable challenging my ideas; and 
the collaborative outcomes from our discussions were often far 
better than my original thoughts.

So, it might seem strange that my first choice on an article to 
describe clustering is about the benefits of hierarchical clustering 
as opposed to the more commonly used nonhierarchical tech-
niques such as k- means clustering. Both categories are usually 
unsupervised machine learning techniques (techniques where 
you do not know the outcomes or labels ahead of time); but k- 
means clustering intuitively appeals to mathematicians because it 
is easy to conceptualize (but not visualize) in several dimensions.

In k- means clustering, you just pick a k (the desired number of 
clusters), assume k random points in your data as the initial cen-
ters of the clusters, assign each data point to one of the clusters 
based on their distances from those k centers, and then compute 
new centers for each cluster based on the distance metrics. Since 
the initial choices were random, it is likely they were wrong. At 
the next round of point assignments, some points are reassigned 
to another cluster based on closeness to the new centers you 
calculated. Again, the cluster centers are recalculated and the 
process continues until points stop changing from one cluster to 
another. This method is computationally efficient, easily accom-
modates several dimensions of factors, and, again, it appeals to 
mathematicians.

Unfortunately, it is not always the most appropriate clustering 
technique. As you can see in Figure 1, k- means can do a good job 
if the underlying data clusters are distinct (not overlapping), and 
the underlying clusters are somewhat spherical in nature and of 
similar density. If the data is donut- shaped, or follows a specific 

curve, or is radial in nature, as in Figures 2 and 3 (pg. 16), it does 
not give a good result.

Beyond this, k- means clustering requires you to choose the num-
ber of clusters (k) ahead of time. If you are doing an exploratory 
analysis of a large set of data, you may not know the appropriate 
k ahead of time. Granted, you can try several different values of 
k and see where the sweet spots seem to be on an elbow curve; 
you can do a silhouette analysis; and you can measure the purity 
of each cluster; but these tests can introduce complexity rather 
than clarity.

Figure 1 
Example Where k- Means (Where k=4) Works Well1

Figure 2 
Example Data Where k- Means Does Not Work Well 
(consider an affinity method instead)
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Most of all, though, the k- means approach is not as easy to 
explain to nonmathematicians, and once you get to higher 
dimensions, where scatter plots may not be appropriate, it lacks 
a visually intuitive presentation mechanism.

In cases of higher dimensionality,2 such as four or more, you 
may wish to consider a hierarchical clustering approach. Even 
three- dimensional clusters can be very misleading when shown 
in two dimensions. A famous anamorphic creation by the artist 
Michael Murphy titled “Perceptual Shift” shows this vividly. 

Looking at it from the front, it appears to be a human eye; but 
from the side it is a cone of seemingly scattered balls.3 The most 
recognizable pattern of stars in the northern hemisphere, the 
Big Dipper (actually part of the constellation Ursa Major) looks 
like a flattened ladle from Earth; but Mirza, the closest star 
of the seven, is 78 light years away from us while Dubhe, the 
farthest, is 123 light years away! Seen from another galaxy, this 
group of stars looks nothing like a dipper.

A hierarchical clustering approach starts with the assumption 
that every data point is its own cluster. Then, it computes the 
distance between each pair of clusters and starts grouping them 
accordingly.

In order for the algorithms to work, there are four distance rules 
we have to specify:

1. Distance cannot be negative: di j > 0 when j ≠ i (i.e., the dis-
tance from cluster i to a different cluster j is positive).

2. Distance from any cluster to itself is zero: di i = 0.

3. Distance is symmetric: di j = dj i (i.e., the distance from clus-
ter i to cluster j is the same as the distance from cluster j to 
cluster i).

4. A triangular inequality holds: di j + dj k >= di k.

Given these rules, we can choose any of a number of different 
metrics for “distance.” Some common choices are shown in 
Figure 4.

Figure 3
Example Data Where k- Means Does Not Work Well 
(consider a Gaussian mixture model instead)

Figure 4
Commonly Used Distance Metrics for Hierarchical Clustering4

Names Formula

Euclidean distance

Squared Euclidean distance

Manhattan distance

Maximum distance

Mahalanobis distance  where S is the Convariance matrix
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Figures 5 and 6 give an idea of what this process looks like 
visually. Initially, let’s assume that we had only six data points. 
We start out assuming each is its own cluster. Alternatively, if 
you feel this is too trivial an example, we might wish to say that 
Figure 5 is the result of previous clustering of a large number of 
points already; and we are now down to six clusters.

We see in Figure 5 that clusters b and c are very close to each 
other, as are clusters d and e. This is reflected in Figure 6, as the 
number of clusters is reduced in Round 1 to four: clusters a, bc, 
de and f.

In the next round we note that cluster de is closer to cluster 
f than to any other cluster so they are combined into cluster 
def. Next, def is combined with cluster bc to obtain cluster bcdef. 
Finally, cluster a is combined with bcdef to form the single cluster 
abcdef. Usually, hierarchical clustering methods are also called 

agglomerative methods,5 and you can see why here. Eventually, 
you end up with just one cluster.

At this point, you might be wondering where I am going with 
this discussion. Why is the lumping together of all the data into 
just one cluster of any use to us?

The usage comes into play via a special sort of tree diagram, 
called a dendrogram. A dendrogram of the clustering process 
we did for our example is shown in Figure 7. Note that this is 
a visual way of showing how the clusters are combined and also 
the relative dissimilarity between the clusters. The taller the 
height before two clusters are combined, the more dissimilar 
they are. We see that cluster a was most different from all of the 
other clusters, while d and e were relatively close.

Let’s consider a more practical example of how hierarchical 
clustering can be useful.

Assume your daughter (or son or niece or nephew or friend) is 
a junior or senior in high school and wants to apply to a univer-
sity with the intent of a double major—in actuarial science and 
data science. You want to help in this project, so you compile a 
list of 40 or so universities that offer both of these majors. The 
parameters for selection may include items such as student pop-
ulation, ratio of students to faculty, percentage of scholarships 
available, distance from home (far enough away for autonomy 

Figure 7
Dendrogram of Six Clusters6

Figure 5 
Six Clusters Prior to Hierarchical Clustering

Figure 6 
Traditional Representation of Hierarchical Clustering

Another benefit of hierarchical clustering is repeatability.

Unlike k- means clustering, which can result in different answers based 
on different starting values for the randomly chosen first set of center 
points, hierarchical clustering is repeatable. As long as your data has not 
changed, and you use the same distance metric, you will always get the 
same result.
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and close enough to bring laundry home), housing costs and tui-
tion, number of Nobel Laureates teaching classes, median SAT 
and ACT scores of incoming students, median compensation of 
graduates after five years, athletic team performances, cultural 
opportunities, male- female student ratio, international student 
ratio, cafeteria selections, average temperature range, proximity 
to the ocean or the mountains, population of nearby city, Cen-
ters of Actuarial Excellence (CAE) status, data science rating 
and perhaps several other criteria.

You don’t want to risk applying to only one university, since 
you can’t predict how selective they may be. Perhaps the 
admissions officer at the interview will be impressed by her 
initiative and creativity to make an interview video while 
juggling on a skateboard to show multitasking ability. But 
what if the interviewer considers this an indicator of a frivo-
lous nature? On the other hand, each application is expensive 
both in dollars and in the time spent visiting the campus and 
researching the overall school environment. It would be nice 
to be able to say with some confidence that a specific subset, 
or group within these 40 schools, is most similar to this stu-
dent’s interests and abilities. This can be an ideal problem for 
a hierarchical clustering solution. You have many dimensions 
and it is not obvious how to group the schools into logical 
clusters.

It will be necessary to convert the categorical factors, such as 
CAE status and cultural opportunities to numeric values—often 
via dummy variables. Then there is the issue that some of these 
numeric parameters have wide ranges relative to others. For 
example, the number of students might be just a few hundred, 
or many thousands. Expenses and distance from home may 
also have wide ranges. Compare those to the number of Nobel 
Laureates, where 0 to 5 might cover every one of the schools. 

In order to avoid having the wide- range items completely over-
shadow the importance of short- range ones, we would employ 
statistical techniques to standardize and normalize our values. 
One such technique might be to substitute each value xi with 
(xi – xmean)/xstandard deviation , which would work fine for a mix of all 
numeric parameters, but still tends to have higher weight than 
the categorical surrogates that range from 0 to 1. In a mixed 
parameter environment, it might be better to map xi to (xi – 
xminimum)/(xmaximum – xminimum), thus ensuring all the items have the 
range 0 to 1.

Once you have your values normalized, both Python and R have 
packages that can do all the heavy- lifting work of creating the 
dendrogram for you. R, in particular, has a package dendroextras
that allows you to label and color your clusters:

if (!is.element(‘dendroextras’, 
 installed.packages()[,1]))
 install.packages(“dendroextras”,
  repos=’http://cran.us .r-project.org’)

I don’t have all those parameters available for my hypothetical 
problem, but I did find a ranking of world university rankings 
on Kaggle at https://www.kaggle.com/mylesoneill/world-university 
-rankings that I will use for a very quick demonstration of how 
to generate a dendrogram of the universities. In this demon-
stration, I’ll keep it simple and use the built- in hierarchical 
clustering in R:

# file from Kaggle site in text
input <-  read.csv(‘cwurData.csv’)
tail(input)

that produces Figure 8.

Figure 8
Sample of Kaggle University Rankings (Kaggle dataset has 1,000 universities in this dataset)



 APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM | 19

Now, we generate the dendrogram:

# just take the top 40 for this example
uniRatings <-  input[1:40,c(2,1,4:10)]
# exclude university name and normalize
normalizedRatings <-  scale(uniRatings[,2:9]) 
distance <-  dist(normalizedRatings, 
 method=’euclidean’)
clus <-  hclust(distance, method=’complete’)
plot(clus,hang=- 1) # display the dendogram
# cut the dendogram into 5 clusters
groups <-  cutree(clus, k=5) 
rect.hclust(clus, k=5, border=’red’)
# output is Figure 9

I then add a new column that denotes group number to the 
data frame:

uniRatings$group <-  groups
uniRatings[1:8]
# Output is Figure 10

Figure 10
Section of Group 1 of the Top Universities

Figure 9
Top 40 World Universities in Five Clusters
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Our top group is probably no big surprise. The highest- rated 
universities are in the same group.

But later, we find some surprises, as the 10 universities shown in 
Figure 11 are all ranked very similarly (31 through 40), but they 
are not that much alike when you consider all of the param-
eters. In fact, University College London is more like Osaka 
University or University of Toronto than it is like Northwestern 
or Washington University in St. Louis. Of course, different 
criteria, such as my hypothetical ones, would group all these 
universities differently, but that is part of the beauty of hierar-
chical clustering: You get to decide what features are important, 
and the similarity grouping is based only upon them.

uniRatings[31:40,]
# output is Figure 11

In this article, I expressed my opinion that hierarchical cluster-
ing can provide advantages over k- means clustering when the 
number of dimensions, n, is too high for a scatter plot.7 The 
dendrogram is a convenient way to show both the clusters and 
the relative dissimilarity between them. It also lets you choose a 
cut point (number of clusters) after construction of the dendro-
gram so you can see logical groupings by extent of dissimilarity 
before you do more calculations. I hope you find the examples 
using R useful. Python has very similar capabilities. Whichever 
programming language you prefer, I think it is worth investigat-
ing this underutilized technique for clustering. ■

Figure 11
Another Section of the Top University Rankings, Showing Varying Groupings

Dave Snell, ASA, ACS, ARA, ChFC, CLU, FALU, 
FLMI, MAAA, MCP, teaches AI Machine Learning 
at Maryville University in St. Louis. He can be 
reached at dave@ActuariesAndTechnology.com.

ENDNOTES

1 Just because a scatter plot looks good in two dimensions does not mean it 
actually represents the data arrangement. See a detailed description of the ana-
morphic creation by Michael Murphy, “Perceptual Shi± ,” at https://mymodernmet 
.com/michael-murphy-perceptual-shi� /.

2 Although hierarchical clustering is good for n dimensions, where n is o± en > 3 and 
beyond those we can readily graph, it involves the computation and storage of an 
n by n matrix, which can be a strain on computing and storage resources.

3 Supra, note 1.

4 Figures 4, 5, and 6 are derived from Wikipedia. Permission is granted to copy, 
distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free So± ware 
Foundation; with no Invariant Sections, no Front- Cover Texts, and no Back- Cover 
Texts. A copy of the license is included in the section entitled GNU Free Documen-
tation License.

5 Actually, hierarchical clustering can be agglomerative (the usual case) where you 
start with n points and keep combining them until you have only one cluster; or 
they can be divisive, where you start with one cluster, then keep subdividing it.

6 Figure 7 was generated by the author using the R package dendroextras.

7 Supra, note 2.
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Feature Importance in 
Supervised Training
By Je� Heaton

Supervised learning is the class of machine learning where 
a model is trained to produce a specific result for a given 
input. These inputs and expected outputs form the train-

ing data for a model. Because the expected outputs are known, 
this type of training is referred to as supervised learning. If there 
are no expected outcomes, then the technique is referred to as 
unsupervised learning. The process of using these data is called 
training or fitting. Whether to use supervised or unsupervised 
learning depends upon the project goal. If the desire is to create 
a model that can be trained to produce some sort of output from 
input data, then you are using supervised training. The focus of 
this article is determining the importance of columns of your 
input data for supervised training.

In the domain of supervised learning, predictive models accept 
a feature vector and return a prediction. For example, a model 
might be asked to accept inputs that specify the face amount, 
annual premium, term, age of applicant, and other values to 
predict the likelihood of the policy being lapsed. These inputs 
are typically referred to as the feature vector or the x- values. 
The output from the model is typically referred to as the score, 
prediction or y- hat value. Some of the input features are more 
important to making an accurate prediction than others. For 
example, term length might be more important to predicting 
lapse than the face amount. There are a wide variety of tech-
niques that can be used to measure the importance of the input 
features.

MODEL-SPECIFIC FEATURE RANKING
Depending on the type of model to be evaluated, there are a 
number of different ways to evaluate feature importance. 
These model- specific, feature- ranking techniques will change 
depending on what model you are using. For example, if you are 
dealing with a generalized linear model (GLM), the coefficients 
can provide an importance measure. Similarly, neural network 
feature importance can be gauged by examining the outbound 
weights from each of the input neurons.1 Additionally, the 
importance of features in tree- based models, such as gradient 
boosting machines (GBMs), random forests, and classification 
and regression trees (CARTs) can be determined by evaluating 

the number and weighting of splits that the given feature was 
involved in.

Of course, these techniques are only valid for GLMs, neural 
networks and tree- based models. If you are making use of other 
model types, such as support vector machines (SVMs), k- nearest 
neighbors or any other, you will need to use a technique that 
is specifically designed for that model type. Furthermore, your 
importance will remain the same over time.

The importance of the model features is generated from the 
model parameters that were defined when the model was fit. 
It is not possible to see how important these features are with 
newer data sets that your model might need to score. Fitting a 
model and deploying it to production are only the first battles 
that a data scientist must face. It is important to ensure that your 
model remains relevant with new data sets and external condi-
tions that might affect the validity of your model. Evaluating the 
importance of features for your trained model on new data sets 
can be an important piece of information in ensuring the con-
tinued robustness of your deployed model. Most model- specific, 
feature- ranking algorithms only analyze the model, and not the 
importance of features in entirely new data sets.

MODEL-AGNOSTIC FEATURE RANKING
Model- agnostic, feature- ranking algorithms consider the intrin-
sic characteristics of the data in evaluating the fitness of the 
feature subset. Model- agnostic, feature- ranking techniques do 
not require a learning algorithm and require fewer computing 
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resources. Rather, the model- agnostic algorithm makes use of 
an already trained model and a data set.

Correlation- coefficient feature importance is a very simple 
model- agnostic, univariate algorithm that calculates the abso-
lute value of the correlation coefficient between each of a 
model’s expected outputs. This value can be used to estimate the 
importance of each input feature to the model. The higher the 
correlation coefficient between an input (x) and the target (y), 
the greater a feature’s importance. To calculate this coefficient, 
the first step is to calculate the covariance (Cij) between the 
two features i and j. Usually, feature i will be the input feature 
currently being evaluated and j will be the target value. This is 
performed by the following equation:

MODEL‐AGNOSTIC FEATURE RANKING 
Model‐agnostic, feature‐ranking algorithms consider the intrinsic characteristics of the data in 
evaluating the fitness of the feature subset. Model‐agnostic, feature‐ranking techniques do not require 
a learning algorithm and require fewer computing resources. Rather, the model‐agnostic algorithm 
makes use of an already trained model and a data set.  

Correlation‐coefficient feature importance is a very simple model‐agnostic, univariate algorithm that 
calculates the absolute value of the correlation coefficient between each of a model’s expected outputs. 
This value can be used to estimate the importance of each input feature to the model. The higher the 
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To 
calculate this coefficient, the first step is to calculate the covariance (Cij) between the two features i and 
j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This 
is performed by the following equation: 
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The value n represents the number of rows in the training data. The value x represents each vector of 
predictors and y represents the expected value. The Pearson product‐moment correlation coefficient is 
given by the following equation (which makes use of the previous equation): 
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The resulting value (R) gives the correlation between any of the inputs (i) and the target (j). The absolute 
value of R indicates how strongly correlated the input is to the target. Higher values are more strongly 
correlated. We provide a Python implementation of the correlation‐coefficient, feature‐importance‐
ranking algorithm that can be used with any Scikit‐Learn model.2 

The input perturbation algorithm3 is a more complex agnostic, feature‐importance algorithm that 
calculates the loss of a model when each of the input features to the neural network is perturbed by the 
algorithm. The idea is that when an important input is perturbed the neural network should have a 
considerable increase in error, that corresponds to the importance of that input. Because the inputs are 
being perturbed, rather than removed entirely, it is not necessary to train a new neural network for 
each evaluated feature. Rather, the feature is perturbed in the provided data set. The feature is 
perturbed in such a way that it provides little or no value to the neural network, yet the neural network 
retains an input neuron for that feature. No change is made to the neural network as each input is 
evaluated. 

To effectively use feature‐perturbation ranking it is necessary to evaluate the loss (E) of a model. If the 
model is regression, the following equation evaluates the loss between the expected output (y) and the 
expected output (ŷ) over n data items: 
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The value n represents the number of rows in the training data. 
The value x represents each vector of predictors and y represents 
the expected value. The Pearson product- moment correlation 
coefficient is given by the following equation (which makes use 
of the previous equation):
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calculates the absolute value of the correlation coefficient between each of a model’s expected outputs. 
This value can be used to estimate the importance of each input feature to the model. The higher the 
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To 
calculate this coefficient, the first step is to calculate the covariance (Cij) between the two features i and 
j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This 
is performed by the following equation: 
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The resulting value (R) gives the correlation between any of the 
inputs (i) and the target (j). The absolute value of R indicates 
how strongly correlated the input is to the target. Higher values 
are more strongly correlated. We provide a Python implementa-
tion of the correlation- coefficient, feature- importance- ranking 
algorithm that can be used with any Scikit- Learn model.2

The input perturbation algorithm3 is a more complex agnostic, 
feature- importance algorithm that calculates the loss of a model 
when each of the input features to the neural network is per-
turbed by the algorithm. The idea is that when an important 
input is perturbed the neural network should have a consid-
erable increase in error, that corresponds to the importance 
of that input. Because the inputs are being perturbed, rather 
than removed entirely, it is not necessary to train a new neu-
ral network for each evaluated feature. Rather, the feature is 
perturbed in the provided data set. The feature is perturbed 
in such a way that it provides little or no value to the neural 
network, yet the neural network retains an input neuron for that 
feature. No change is made to the neural network as each input  
is evaluated.

To effectively use feature- perturbation ranking it is necessary 
to evaluate the loss (E) of a model. If the model is regression, 

the following equation evaluates the loss between the expected 
output (y) and the model output (ŷ) over n data items:
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calculates the absolute value of the correlation coefficient between each of a model’s expected outputs. 
This value can be used to estimate the importance of each input feature to the model. The higher the 
correlation coefficient between an input (x) and the target (y), the greater a feature’s importance. To 
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j. Usually, feature i will be the input feature currently being evaluated and j will be the target value. This 
is performed by the following equation: 

 

��� ����� � ������ � ���
� � �

�

���
 

The value n represents the number of rows in the training data. The value x represents each vector of 
predictors and y represents the expected value. The Pearson product‐moment correlation coefficient is 
given by the following equation (which makes use of the previous equation): 

��� � ���
���� � ���  

The resulting value (R) gives the correlation between any of the inputs (i) and the target (j). The absolute 
value of R indicates how strongly correlated the input is to the target. Higher values are more strongly 
correlated. We provide a Python implementation of the correlation‐coefficient, feature‐importance‐
ranking algorithm that can be used with any Scikit‐Learn model.2 

The input perturbation algorithm3 is a more complex agnostic, feature‐importance algorithm that 
calculates the loss of a model when each of the input features to the neural network is perturbed by the 
algorithm. The idea is that when an important input is perturbed the neural network should have a 
considerable increase in error, that corresponds to the importance of that input. Because the inputs are 
being perturbed, rather than removed entirely, it is not necessary to train a new neural network for 
each evaluated feature. Rather, the feature is perturbed in the provided data set. The feature is 
perturbed in such a way that it provides little or no value to the neural network, yet the neural network 
retains an input neuron for that feature. No change is made to the neural network as each input is 
evaluated. 

To effectively use feature‐perturbation ranking it is necessary to evaluate the loss (E) of a model. If the 
model is regression, the following equation evaluates the loss between the expected output (y) and the 
expected output (ŷ) over n data items: 

� � ∑ ���� � ��������
�  

If there are multiple outputs, they are simply considered as addi-
tional y and ŷ values. If the neural network is classification, then 
a multi- logloss evaluate is performed:

If there are multiple outputs, they are simply considered as additional y and ŷ values. If the neural 
network is classification, then a multi‐logloss evaluate is performed: 

� � �1
�� ��� log����� � �1 � ��� log�1 � �����

�

���
 

 

To successfully perturb a feature for the input‐perturbation, feature‐importance algorithm two 
objectives must be met. First, the input feature must be perturbed to the point that it now provides 
little or no predictive power to the neural network. Secondly, the input feature must be perturbed in 
such a way that it does not have adverse effects on the neural network beyond the feature being 
perturbed. Both objectives are accomplished by shuffling, or perturbing, the column that is to be 
evaluated. By shuffling the column, the wrong input values will be presented for each of the expected 
targets. Secondly, the shuffle ensures that most statistical measures of the column remain the same, as 
the column will maintain the same distribution. 

Feature importance is usually reported as a table that shows the name of each feature, its relative 
importance, and the error that the model reported when that feature was perturbed. For example, 
Table 1 might represent the importance of four features: 

Table 1 

Sample Feature Importance Ranking 

Feature Name  Importance  Loss 
D  1  5 
B  0.6  3 
A  0.4  2 
C  0.1  0.5 

 

The higher the loss, the more important a feature is. The perturbation effectively removes the feature 
from the prediction. Removing an important feature will result in a higher loss than removing a less 
important feature. Each feature has an importance that is reported as the value of that feature’s loss 
divided by the highest loss. Because of this, the most important feature will always have an importance 
of 1. The importance values will not sum to 1.0. Rather, the importance values show the relative 
importance of each feature to the most important feature. We provide a Python implementation of the 
perturbation‐ranking algorithm that can be used with any Scikit‐Learn model.4 

MULTIVARIATE FEATURE RANKING 
It is also possible to use the perturbation feature‐ranking algorithm to evaluate multivariate features. It 
is possible that two features are more important together than they are separately. To evaluate this, a 
pair‐wise feature importance could be generated for each of the possible pairs of features, similar to 
how a covariance matrix is often calculated to determine which feature pairs are strongly correlated to 
each other.  

The generation of a pair‐wise multivariate feature importance report is produced similarly to the 
univariate‐perturbation, feature‐ranking algorithm presented in the previous section. The primary 

To successfully perturb a feature for the input- perturbation, 
feature- importance algorithm two objectives must be met. First, 
the input feature must be perturbed to the point that it now 
provides little or no predictive power to the neural network. 
Secondly, the input feature must be perturbed in such a way that 
it does not have adverse effects on the neural network beyond 
the feature being perturbed. Both objectives are accomplished 
by shuffling, or perturbing, the column that is to be evaluated. 
By shuffling the column, the wrong input values will be pre-
sented for each of the expected targets. Secondly, the shuffle 
ensures that most statistical measures of the column remain the 
same, as the column will maintain the same distribution.

To eµectively use feature-
perturbation ranking it is 
necessary to evaluate the 
loss (E) of a model.

Feature importance is usually reported as a table that shows the 
name of each feature, its relative importance, and the error that 
the model reported when that feature was perturbed. For exam-
ple, Table 1 might represent the importance of four features:

Table 1 
Sample Feature Importance Ranking

Feature Name Importance Loss
D 1 5

B 0.6 3

A 0.4 2

C 0.1 0.5

The higher the loss, the more important a feature is. The per-
turbation effectively removes the feature from the prediction. 
Removing an important feature will result in a higher loss than 
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removing a less important feature. Each feature has an impor-
tance that is reported as the value of that feature’s loss divided 
by the highest loss. Because of this, the most important feature 
will always have an importance of 1. The importance values will 
not sum to 1.0. Rather, the importance values show the relative 
importance of each feature to the most important feature. We 
provide a Python implementation of the perturbation- ranking 
algorithm that can be used with any Scikit- Learn model.4

MULTIVARIATE FEATURE RANKING
It is also possible to use the perturbation feature- ranking algo-
rithm to evaluate multivariate features. It is possible that two 
features are more important together than they are separately. 
To evaluate this, a pair- wise feature importance could be gener-
ated for each of the possible pairs of features, similar to how a 
covariance matrix is often calculated to determine which feature 
pairs are strongly correlated to each other.

The generation of a pair- wise multivariate feature importance 
report is produced similarly to the univariate- perturbation, 
feature- ranking algorithm presented in the previous section. 
The primary difference is that two columns will be perturbed 
at a time, rather than a single column. To perform this, it will be 
necessary to loop over every combination of features taken two 
at a time. For example, 10 features result in 45 evaluations. This 
is because 10 items, taken two at a time, yield 45 combinations.

Visually, this can be thought of as a pair- wise matrix. The diag-
onal is discarded, because that would consider each feature with 
itself. Likewise, the upper or lower triangle of the matrix can 
be discarded because the pair- wise importance of feature- 1 and 
feature- 2 is the same as the pair- wise importance of feature- 2 
and feature- 1. Considering triplets, quadruplets and higher 
multiples would considerably increase the amount of processing 
that would be necessary.

SUMMARY
Feature- importance ranking is a very important consideration 
for data science. It can be used to optimize your data set and 
remove unimportant features to improve the performance of 
your model. This decreases the computation time needed for 
your model and often increases the accuracy. Feature engineer-
ing also benefits greatly from feature importance evaluation. 
As additional features are engineered, they can be evaluated 
to see their relative importance to the model. When using 
feature importance in conjunction with feature engineering, it 
is important to remember that the perturbation- ranking algo-
rithm will typically share the importance between two closely 
correlated features. Because engineered features are mathemati-
cal combinations and transformations of the original feature set, 
the engineered features are usually strongly correlated to the 
original feature set. Therefore, it is important to keep in mind 
that the engineered features are usually sharing importance with 
the original features from which they were constructed. ■

Jeµ  Heaton, Ph.D., is lead data scientist, 
Reinsurance Group of America, in Chesterfield, 
Mo. He can be reached at JHeaton@rgare.com.
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Shiny: Another Step 
Forward in Data 
Democratization
By Eileen S. Burns

RSTUDIO AND SHINY
Years ago, RStudio gave the R user community a better way 
to interact with R than the R graphical user interface (GUI). 
There were and are other GUIs available, but RStudio com-
bines so many features that it’s been a no- brainer for our team 
and countless others: project files, visual folder structures, 
seamless connection to CRAN repositories, easy update of R 
and package versions, integration with Markdown and Sweave, a 
customizable interface including plot and help features, history 
and environment maps, and seamless integration with Git and 
GitHub.

Through that easy- to- use interface, with a little writing of code, 
RStudio let us connect with our data in a transparent way—pull 
it in, analyze it, visualize it, fit models to it, make predictions, 
validate our models, save our scripts, and easily document which 
scripts were important, what they did, and what the results were.

In a nutshell, it let us be real data scientists, with an emphasis on 
enabling that gold standard: reproducible research.

With all that RStudio has let us streamline, it still requires that 
users know how to code in order to learn from data.

In comes Shiny, the next step in democratization of data science 
from the makers of RStudio.

What is Shiny? It is an R package described as “a web appli-
cation framework for R.” In short, Shiny lets those of us who 
know how to code create user- friendly interfaces to share with 
our friends who would rather not. It comes with some samples 
to get you started, and as you would expect for an R package, 
and anything from RStudio, it has a great user community for 
support and ideas.

OUR FIRST PAF SECTION WEB APPLICATION
Rather than simply tell you how great Shiny is (I promise I’m 
not being paid by RStudio for this), I wanted to show you. I’m 

using as a guinea pig the newly minted Predictive Analytics and 
Futurism (PAF) Newsletter Catalogue. The catalogue is here 
https://www.soa.org/sections/pred-analytics-futurism/index-of-paf 
-articles.xlsx. I confess I did some non- reproducible editing of 
the list in order to make it more fun to play with, so this will 
not update seamlessly as new articles are added to the index. 
I’ll save that for a future iteration. I have also supplemented the 
catalogue with some metadata pulled for more recent articles by 
the Society of Actuaries (SOA) staff.

I created a Shiny app to visualize what our section members 
have been writing about for the past nine years. I built in three 
features—a histogram to display frequencies by author, news-
letter edition, topic, etc.; a word cloud to visualize the relative 
frequency of various keywords; and a table to allow sorting, 
filtering to a single author or edition, and searching by text  
string.

Then, to give my application its first important use, I used the 
features to make sure I wasn’t writing a repeat of a prior PAF 
Newsletter article.

Using the word cloud (Figure 1), I got a handle on what the 
biggest topics have been. Visualization tools certainly haven’t 
made a huge splash to date.

Using the search function on the data table (Figures 2 and 3), I 
can see there have been no mentions of Shiny or Git (with this 
meaning anyway). There are only four mentions of “visual” and 
eight of “language.” I’ve put it on my to- do list to go back to 
those four articles that mention visuals!

Figure 1 
Word Cloud of PAF Article Keywords



26 | APRIL 2018 PREDICTIVE ANALYTICS AND FUTURISM 

Shiny: Another Step Forward in Data Democratization

The bar plot (Figure 4, pg. 27) confirmed that Dave Snell is by 
far our most prolific author; the table can help me discover if he 
has a particular focus outside of his contributions as our editor.

Could I have found all of these answers in Excel? Absolutely. 
Ultimately, that’s where the information came from. I love Excel, 

but going forward, I won’t be using it to get those answers. With 
this app I’ll be able to more quickly visualize what’s been written 
about, when, by whom, and what’s ready for some more attention. 
I can share the app with my team so they can brainstorm what 
they’d like to add into the PAF dialogue. If I publish the app to 
an internal server, I can share it with more senior folks who don’t 

Figure 2 
Table of PAF Articles

Figure 3 
Table of PAF Articles Filtered to Show One Article with “Shiny” Mentioned in Comments
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know the first thing about R, and they can use it to make sugges-
tions. All of us can use it to identify past articles on topics relevant 
to our jobs. We’ve democratized the data on the PAF Newsletter.

HOW TO USE THIS APP AT HOME
With just a few steps you can be up and running in Shiny:

1. Install RStudio if you haven’t already.

2. Install the Shiny package in RStudio.

3. Create a new project under File - > new Project, and select 
Shiny Web Application.

a. You may or may not choose to create a Git repository.

4. Click Run App.

What you’ll see is a simple interactive application based on Old 
Faithful geyser data.

If you want to go a few steps further and run this Shiny app, you 
can find it on Milliman’s public GitHub account here: https:// 
github.com/milliman/SOA_PAF_Section_Newsletter_Catalogue. 
The repository contains six key files (plus the standard 
README.md, LICENSE.txt, and .gitignore):

1. Keywords.csv. A list of the keywords referenced in the 
metadata for the more recent articles

2. PAFCatalogueComplete.csv. An augmented table based 
on the PAF catalogue referenced above

3. loaddata.R. An R script that loads the keywords and the 
article catalogue

4. server.R. Code for doing analysis and returning a figure 
or table

5. ui.R. Code for structuring the user interface

6. SOA_PAF_Section_Newsletter_Catalogue.Rproj. The R 
project file that holds it all together

You’ll notice this app contains the same Old Faithful geyser 
feature as the default Shiny app. I kept it in the app to show how 
easily you can switch to a layout that has a navigation bar to flip 
between multiple features.

NEXT STEPS
While newsletter data makes for a useful jumping- off point, 
there are clearly more compelling applications for actuaries with 
access to large data sets and related business questions. It helps 
to start with a question and an idea for what data visualizations 
will help you answer it, but you don’t have to come up with all 
of the ideas yourself.

Shiny.rstudio.com/gallery is a good place to go to see what other 
users are doing with Shiny. It pointed me to the word cloud 
as a good option for immediately seeing frequently addressed 
topics. It can give you some great ideas for graphs, maps, tables, 
dynamic input options and layouts.

If you get really into it and want to share your work, Shinyapps.io
is there for you. For a richer experience, I recommend engaging 
with the broader R user community. I recently attended an R 
user group meeting in Seattle dedicated solely to sharing web 
applications built with Shiny. My team has been building Shiny 
apps for years, and I still came away with new ideas.

There is nearly no end to how sophisticated you can go, or how 
many data- based insights you can offer those using your appli-
cations. ■

Eileen Burns, FSA, MAAA, is a consulting 
actuary with Milliman. She can be contacted at 
eileen.burns@milliman.com.

Figure 4
Bar Plot Displaying Distribution of Authorship
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